- Gun, A.M., Gupta, M.K. and Dasgupta, B. (2005). An Outline of Statistical Theory, Volume II, World Press.
- Arora, S. and Bansi, L. (1968). New Mathematical Statistics, 1st Ed., Vanita Printers.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

COMMON POOL OF GENERIC ELECTIVES (GE) COURSES OFFERED BY DEPARTMENT OF STATISTICS CATEGORY-IV

GENERIC ELECTIVE -5A: INTRODUCTION TO STATISTICAL LINEAR MODELS

CREDIT DISTRIBUTION, ELIGIBILITY, AND PRE-REQUISITES OF THE COURSE

Course title & code	Credits	Credit dist	ribution of th	Eligibility	Pre-	
		Lecture s	tutorials	practical	criteria	of the course (if any)
Introduction to Statistical Linear Models	4	3	0	1	Class XII pass with Mathematics	knowledg e of sampling distributio ns and matrix theory

Learning Objectives:

learning objectives include:

- Developing a clear understanding of the fundamental concepts of linear models.
- Developing associated skills allowing the students to work effectively with them.

Learning Outcomes:

After completion of this course, students should have developed a clear understanding of:

- Theory and estimation of Linear Models.
- Gauss-Markov Theorem and its use.
- Distribution of quadratic forms.
- Simple and Multiple linear regression models and their applications.

• Fitting of these models to real or synthetic data, derivation of confidence and prediction intervals, and a sound scientific interpretation of the results.

- Techniques of Analysis of Variance under fixed effects model.
- Assessment of the quality of the fit using classical diagnostics,

SYLLABUS OF GE-5A THEORY

UNIT I:

Introduction:

Statistical linear models and their classification, Estimability of linear parametric functions, Gauss-Markov set-up, Normal equations, and Gauss-Markov theorem: full rank case and non-full rank case (without proof).

UNIT II:

Distribution of Quadratic Forms:

Cochran's theorem (without proof), Necessary and sufficient conditions for the mutual independence of quadratic forms and for the mutual independence of a linear function and a quadratic form.

UNIT III:

Regression Analysis:

Simple and Multiple linear regression: Estimation and testing of hypothesis, confidence interval, bias in regression estimates, Lack of fit and pure error, Residuals, and their plot. Techniques for Variable selection. Polynomial Regression models: Orthogonal Polynomials.

UNIT IV:

Analysis of Variance (ANOVA):

The technique of ANOVA for one-way and two-way classifications with an equal number of observations per cell under a fixed effects model.

PRACTICAL/LABWORK -30 Hours

List of Practicals

- 1. Estimability when X is a full rank matrix
- 2. Estimability when X is not a full rank matrix
- 3. Distribution of Quadratic forms
- 4. Simple Linear Regression
- 5. Multiple Regression
- 6. Tests for Linear Hypothesis
- 7. Bias in regression estimates
- 8. Lack of fit
- 9. Orthogonal Polynomials
- 10. Analysis of Variance of a one-way classified data.
- 11. Analysis of Variance of a two-way classified data with one observation per cell.
- 12. Analysis of Variance of two-way classified data with m (> 1) observations per cell.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

(12 hours)

(12 hours)

(8 hours)

(13 hours)

ESSENTIAL READINGS

- Montgomery, D. C., Peck, E. A. and Vining, G. G. (2012): Introduction to Linear Regression Analysis, 5th Ed., John Wiley and Sons.
- Rencher, A. C. and Schaalje, G. B. (2008): Linear Models in Statistics, 2nd Ed., John Wiley and Sons.
- Draper, N. R. and Smith, H. (1998): Applied Regression Analysis, 3rd Ed., John Wiley and Sons.

SUGGESTIVE READINGS:

- Weisberg, S. (2005): Applied Linear Regression, 3rd Ed., John Wiley and Sons.
- Rawlings, John O. Pantula Sastry G. Dickey, David A. (1998) Applied Regression Analysis: A Research Tool, Second Edition
- Bapat, R.B.(1993): Linear Algebra and Linear Models, Hindustan Book Agency.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.

GENERIC ELECTIVE 5B: FUNDAMENTALS OF VITAL STATISTICS AND DEMOGRAPHY

CREDIT DISTRIBUTION, ELIGIBILITY, AND PRE-REQUISITES OF THE COURSE

Course title & Code	Credits	Credit d Course	istribution	of the	Eligibility Criteria	Pre- requisite of the Course (if any)
		Lecture	Tutorial	Practical/ Practic e		
Vital Statistics and Demography	4	3	0	1	Class XII pass with Mathematics	knowledg e of basic statistics

Learning Objectives:

The learning objectives of this course are as follows:

- To collect valid Demographic data using different methods.
- To learn basic measures of Mortality, Fertility, and Population Growth.
- To construct life tables.

Learning Outcomes:

After successful completion of this course, students should be able to:

- Distinguish between Vital Statistics and Demography.
- Understand errors in Demographic data.
- Comprehend sources of data collection on Vital Statistics and errors therein.
- Use methods for measurement of Population.
- Distinguish between Rate and Ratio.
- Understand the basic measures of Mortality.
- Describe and apply the concepts of Stable and Stationary Populations.
- Understand the concept of Life Tables, their construction, and uses.
- Understand the basic measures of Fertility.
- Apply measures of Population Growth.

SYLLABUS OF GE 5B

Theory

UNIT I:

Introduction to Vital Statistics

Introduction and sources of collecting data on vital statistics, errors in the census, and registration data. Measurement of population, rate, and the ratio of vital events.

UNIT II:

Measurements of Mortality

Crude Death Rate (CDR), Specific Death Rate (SDR), Infant Mortality Rate (IMR), and Standardized Death Rates. Stationary and Stable population, Central Mortality Rates, and Force of Mortality.

UNIT III:

Life Tables

Life(Mortality) Tables: Assumption, description, construction of Life Tables, and Uses of Life Tables.

UNIT IV:

Measurements of Fertility

Crude Birth Rate (CBR), General Fertility Rate (GFR), Specific Fertility Rate (SFR), and Total Fertility Rate (TFR). Measurement of Population Growth: Crude rates of natural increase, Pearl's Vital Index, Gross Reproduction Rate (GRR), and Net Reproduction Rate (NRR).

PRACTICAL/LAB WORK

List of Practical:

1. To calculate CDR and Age Specific death rate for a given set of data.

- 2. To find a standardized death rate by (i) Direct method and (ii) Indirect method.
- 3. To construct a complete life table.
- 4. To fill in the missing entries in a life table.
- 5. To calculate CBR, GFR, SFR, TFR for a given set of data.
- 6. To calculate Crude rate of Natural Increase and Pearle's Vital Index for a given set of data.
- 7. Calculate GRR and NRR for a given set of data and compare them.

Practical work to be conducted using electronic spreadsheet / EXCEL/ Statistical Software Package/ SPSS/ calculators.

ESSENTIAL READINGS:

(10 Hours)

(13 Hours)

(10 Hours)

(12 Hours)

- Gun, A.M., Gupta, M.K. and Dasgupta, B. (2008). Fundamentals of Statistics, Vol. II, 9thEd., World Press.
- Biswas, S. (1988). Stochastic Processes in Demography & Application, Wiley Eastern Ltd.
- Croxton, Fredrick, E. Cowden, Dudley J. and Klein, S. (1973). Applied General Statistics, 3rd Ed., Prentice Hall of India Pvt. Ltd.

SUGGESTED READINGS:

- Keyfitz, N. and Beekman, J.A. (1985). Demography through Problems. S-Verlag, New York.
- Mukhopadhyay, P. (1999). Applied Statistics, Books and Allied (P) Ltd.

Note: Examination scheme and mode shall be as prescribed by the Examination Branch University of Delhi, from time to time.