BSc. (H) Instrumentation Category-I

DISCIPLINE SPECIFIC CORE COURSE -1 (DSC-1) -: Analog Electronics (INDSC1A)

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title	Credit s	Credit distribution of the course			Eligibility	Pre-
& Code		Lecture	Tutoria 1	Practical/ Practice	criteria	requisite of the course (If any)
Analog Electronics (INDSC1A)	04	03	-	01	Course Admission Eligibility	Nil

Learning Objectives

The Learning Objectives of this course are as follows:

- To impart in-depth knowledge of semiconductor devices & circuits focusing on many aspects of design & analysis
- To design various biasing configurations for transistor circuits
- To provide knowledge of amplifiers and their design
- To introduce the concept of feedback for designing oscillators

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the working of the diode circuits
- Analyze analog circuits and their applications using active devices
- Understand the design of feedback circuits and use them in amplifiers and Oscillators
- Explain the operation of various oscillator circuits

SYLLABUS OF DSC-1

UNIT – I

(12 Hours)

Diode and its application: Introduction to semiconductor materials, intrinsic & extrinsic semiconductors. PN junction diode: Depletion region, Junction capacitance, Construction, and Working, Diode equation, Effect of temperature on reverse saturation current, Ideal diode. Diode applications: clipper circuits, clamping circuits, Half wave rectifier, center-tapped, and bridge full-wave rectifiers, calculation of efficiency and ripple factor. DC power supply: Block diagram of regulated power supply, Zener diode as a voltage regulator.

UNIT – II

(12 Hours)

Bipolar Junction Transistor (BJT): NPN and PNP transistors, current components in BJT, Transistor amplifying action, Input and Output characteristics of BJT for CE, CB, CC

configurations (cut-off, active, and saturation regions), CE configuration as a two- port network: h-parameters, h- parameter equivalent circuit.

UNIT – III

(12 Hours)

BJT Biasing: Fixed bias, collector to base bias, emitter bias, and voltage divider bias circuits. **CE amplifier and frequency response:** dc and ac load line analysis, Hybrid equivalent of CE, the frequency response of CE amplifier.

Introduction to Power Amplifiers: Class A, Class B, Class AB, and Class C

UNIT – IV

(9 Hours)

(30 Hours)

Feedback Amplifiers and Oscillators: Concept of feedback, negative and positive feedback, Negative feedback: advantages and disadvantages of negative feedback, voltage (series and shunt), current (series and shunt) feedback amplifiers, derivation of gain, input and output impedances for feedback amplifiers. Oscillators: Barkhausen criteria for sustained oscillations, Study of phase shift oscillator, Colpitt's oscillator, and Crystal oscillator.

Practical component-

- 1. To study I-V characteristics of PN junction and Zener diodes in forward and reverse bias configurations.
- 2. To study clipping and clamping circuits.
- 3. To study the Half wave rectifier and full-wave rectifier.
- 4. To design the power supply with capacitor filter
- 5. To study input and output I-V characteristics of common base and common emitter transistor configurations.
- 6. To study Fixed Bias and Voltage divider bias configurations of BJT.
- 7. To design a Single Stage CE amplifier for a given gain.
- 8. To study the frequency response of a single stage CE Amplifier
- 9. To study the Colpitt's Oscillator.
- 10. To study the Phase Shift Oscillator.
- 11. To study Class A, Class B and Class AB power amplifier

Essential/recommended readings

- 1. R. L. Boylestad, L. Nashelsky, K. L. Kishore, Electronic Devices and Circuit Theory, Pearson Education (2006).
- 2. N Bhargava, D C Kulshreshtha and S C Gupta, Basic Electronics and linear circuits, Tata Mc Graw Hill (2007).
- 3. J. Millman and C. Halkias, Integrated Electronics, Tata McGraw Hill (2001).
- 4. David A. Bell, Electronic Devices & Circuits, Oxford University Press, Fifth edition.
- 5. Mottershed, Electronic Devices, PHI Publication, 1stEdition.
- 6. D. L. Schilling and C. Belove, Electronic Circuits: Discrete and Integrated, Tata McGraw Hill(2002).

Suggestive readings:

- 1. J. R. C. Jaegar and T. N. Blalock, Microelectronic Circuit Design, Tata McGraw Hill(2010).
- 2. Donald A. Neamen, Electronic Circuit Analysis and Design, Tata McGraw Hill(2002).

3. J.Cathey, 2000 Solved Problems in Electronics, Schaum"s outline Series, Tata Mc Graw Hill (1991).

Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

DISCIPLINE SPECIFIC CORE COURSE – 2 (DSC-2): Basic Circuit theory (INDSC1B)

Credit distribution, Eligibility and Prerequisites of the Course

Course title & Code	Credit s	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course
		Lecture	Tutoria 1	Practical/ Practice		(if any)
Basic Circuit theory (INDSC1B)	04	03	-	01	Course Admission Eligibility	Nil

Learning Objectives

The Learning Objectives of this course are as follows:

- To develop an understanding of the fundamental laws and elements of electric circuits.
- To learn the energy properties of electric elements and techniques to measure current and voltage.
- To develop the ability to apply circuit analysis to AC and DC circuits.
- To understand signals, waveforms and transient & steady state responses of RLC circuits.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the current-voltage characteristics of basic fundamental elements
- Design and analyze the electronic circuits using various network theorems
- Understand frequency response and behavior of ac circuits
- Understand the concept of two port network and overall response for interconnection of two port networks

SYLLABUS OF DSC-2

UNIT – I

(12 Hours)

Basic Circuit Concepts: Voltage and Current Sources including their types, Resistors: types and color coding, Capacitor: types and color coding, Inductor: types and color coding, star-delta conversion & delta-star conversion. Sinusoidal voltage and current: Definition of instantaneous, peak to peak, average and rms value.

UNIT – II

(12 Hours)

53

Concepts of Circuit Analysis: Ohms Law, Kirchhoff's Current Law (KCL), Kirchhoff's **Concepts of Circuit Analysis:** Ohms Law, Kirchhoff's Current Law (KCL), Kirchhoff's Voltage Law (KVL), Node Analysis, Mesh Analysis.

Network Theorem (DC Circuits): Principal of Duality, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Reciprocity Theorem, Millman's Theorem, Maximum Power Transfer Theorem. Voltage Law (KVL), Node Analysis, Mesh Analysis.

Network Theorem (DC Circuits): Principal of Duality, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Reciprocity Theorem, Millman's Theorem, Maximum Power Transfer Theorem.

UNIT – III

(12 Hours)

DC Transient Analysis: Time Constant, Response of RC, RL and RLC circuit to dc source(s), Response of source free RC, RL and RLC circuit.

AC Circuit Analysis: Voltage-Current relationship in Resistor, Inductor and Capacitor, Phasor, Complex Impedance. Mesh Analysis, Node Analysis and Network Theorems for AC Circuits. Frequency Response of Series and Parallel RLC Circuits, Resonance, Quality (Q) Factor and Bandwidth. Fundamentals of passive Filters: Low Pass, High Pass, Band Pass and Band Stop.

UNIT – IV

(9 Hours)

Power in AC Circuits: Instantaneous Power, Average Power, Reactive Power, Complex Power and Power Triangle, Power Factor.

Two Port Networks: Introduction to two port networks, Impedance (Z) Parameters, Admittance (Y) Parameters, hybrid (h) parameters and Transmission (ABCD) Parameters.

Practical component-

(30 Hours)

- 1. Verification of Kirchoff's Law.
- 2. Verification of Norton's Theorem.
- 3. Verification of Thevenin's Theorem.
- 4. Verification of Reciprocity Theorem.
- 5. Verification of Superposition Theorem.
- 6. Verification of the Maximum Power Transfer Theorem.
- 7. Designing of RC Integrator circuit.
- 8. Designing of RC differentiator circuit.
- 9. Designing of a RC Low Pass Filter and study of its Frequency Response.

10. Designing of a RC High Pass Filter and study of its Frequency Response.

Essential/recommended readings

- 1. S. A. Nasar, Electric Circuits, Schaum"s outline series, Tata McGraw Hill (2004).
- 2. Electrical Circuits, M. Nahvi and J. Edminister, Schaum"s Outline Series, Tata McGraw-Hill (2005).
- 3. Robert L. Boylestad, Essentials of Circuit Analysis, Pearson Education (2004).

Suggestive readings: Nil

- 1. W. H. Hayt, J. E. Kemmerly, S. M. Durbin, Engineering Circuit Analysis, Tata McGraw Hill (2005).
- 2. Alexander and M. Sadiku, Fundamentals of Electric Circuits, McGraw Hill (2008).

DISCIPLINE SPECIFIC CORE COURSE- 3 (DSC-3): Testing and Measurement (INDSC1C)

Credit Course title & Credit distribution of the course Eligibility **Pre-requisite** Code Tutoria criteria of the course S Lecture Practical/ (if any) Practice 1 02 02 Testing and 04 _ Course Nil Measurement Admission

Credit distribution, Eligibility and Pre-requisites of the Course

Learning Objectives

(INDSC1C)

The Learning Objectives of this course are as follows:

• To describe the units of measure and the various instruments used in various measurement parameters.

Eligibility

- To teach the various methods in power measurement.
- To make them understand about the error in measurement systems.
- To explain the various components of a testing and calibration system.

Learning outcomes

The Learning Outcomes of this course are as follows:

- Understand the basic concept of measurements and calibration
- Perform error measurement concepts correctly and present final values with the correct units/symbols
- Analyze various standardization techniques in Production Plants
- Familiarize with various testing and calibration procedures in measurement

SYLLABUS OF DSC-3

UNIT – I

(12 Hours)

Introduction to Measurement System, Significance of Measurement, Methods of measurement, Elements of a generalized measurement system.

Performance characteristics of measurement system: Static Characteristics -Accuracy, Sensitivity, Linearity, Precision, Resolution, Threshold, Range, Hysteresis, Dead Band, Backlash, Drift, Impedance Matching and Loading.

Dynamic Characteristics- Types, Fidelity, Speed of Response, Dynamic Error.

UNIT – II

(12 Hours)

Measuring Instruments: Introduction to Voltmeters, Ammeters, Ohmmeters, Digital Multimeters, Clamp Meter, Lux meter, Flux Meter, Tester, Function Generator, Bolometer, B-Dot and D-Dot Sensors.

Errors in measurement systems:

Definition of Errors: Systematic Errors, Instrumental Errors, Environmental Errors, Random Errors, Loading Errors, Limiting Errors. Source of Errors in Measuring Instruments.

UNIT – III

(9 Hours)

Introduction to Testing, Fault, Types of Faults, Methods used for localizing faults, Methods used for ground and short circuit faults, Murray loop test, Varley loop test, location of open circuit faults in cable, types of Probes and Connectors.

UNIT – IV

(12 Hours)

Standardization and Calibration Modelling: Standardization in Production Plants and manufacturing houses, Reliability studies and inspection, Product Standardization techniques, Calibration: Calibration of measuring instruments, Theory and Principles (absolute and secondary or comparison method), Setup, Modelling.

Various Testing and Calibration Systems: Sensor calibration and testing, Analytical methods in calibrating, Automated test and calibration systems.

Practical component -

(30 Hours)

- 1. Testing of Active and Passive Components.
- 2. Testing of all basic components.
- 3. Calculation and verification of Resistance.
- 4. Calculation and verification of Voltage and Current.
- 5. Testing of Faulty equipment.
- 6. Fault diagnosis of Lab. Instruments.
- 7. Measurement of Temperature.
- 8. Measurement of Pressure.
- 9. Measurement of Power.
- 10. Measurement of Energy using Energy meter.
- 11. Study of Electrical and Mechanical parameters standards used in testing and calibration.
- 12. Calibration of Instruments.
- 13. Testing of Electrical Components.
- 14. Testing of Various Instruments.
- 15. Murray Loop test
- 16. Varley loop test
- 17. B-Dot sensor, D-Dot sensor
- 18. Study of Lux meter
- 19. Study of Flux meter
- 20. Study of Multimeter

Essential/recommended readings

- 1. Electrical measurement and measuring Instruments by Golding and Widdis.
- 2. Electrical and Electronic measurements and Instruments By A.K.Sawhney.

Suggestive readings

1. Electrical measurements and Measuring instruments By Rajendra Prasad.